

Operators manual

optris® Pl

160/ 200/ 230/ 400/ 450/ 450 G7/ 640/ 640 G7/ 1M/ 05 M

Infrared camera

Optris GmbH

Ferdinand-Buisson-Str. 14 13127 Berlin Germany

Tel.: +49 30 500 197-0 Fax: +49 30 500 197-10

E-mail: info@optris.de Internet: www.optris.de

Table of contents

T	able of	contents	3
1	Gen	neral Notes	7
	1.1	Intended use	7
	1.2	Warranty	8
	1.3	Scope of delivery	9
	1.4	Maintenance	9
	1.4.	1 Cleaning	9
	1.5	Model overview	10
2	Tec	hnical Data	11
	2.1	General specifications	11
	2.2	Electrical specifications	15

Process interface 48

4.1

٦	able of	contents 5
	4.1.	1 PIN allocation50
	4.1.	2 Industrial Process Interface (optional)
	4.2	Example for a Fail-Safe monitoring of the PI with a PLC
	4.3	USB cable extension
5	Soft	tware PI Connect59
	5.1	Installation and initial start-up60
	5.2	Software window63
	5.2.	1 Basis features of the software PI Connect65
6	Bas	sics of Infrared Thermometry68
7	Emi	ssivity74
	7.1	Definition74
	7.2	Determination of unknown emissivity
	7.3	Characteristic emissivity

\$optris

Appendix A – Table of emissivity for metals	79
Appendix B – Table of emissivity for non-metals	81
Appendix C – Quick start for serial communication	82
Appendix D – Interprocess Communication (IPC)	84
Appendix E – PI Connect Resource Translator	85
Appendix F – Wiring diagrams PIF	86
Appendix G – Declaration of Conformity	90

General Notes 7

1 General Notes

1.1 Intended use

Thank you for choosing the **optris**® **PI** infrared camera.

The optris PI calculates the surface temperature based on the emitted infrared energy of objects [▶6 Basics of Infrared Thermometry]. The two-dimensional detector (FPA - focal plane array) allows a measurement of an area and will be shown as thermal image using standardized palettes. The radiometric processing of the picture data enables the user to do a comfortable detailed analysis with the software PI Connect.

The PI is a precise instrument and contains an extremely sensitive infrared detector and a high-quality lens.

The alignment of the camera to **intensive energy sources** (e.g. devices which emit laser radiation or reflections of such equipment) can cause an **irreparable defect of the infrared detector**. This is also valid if the camera is switched off.

Such kinds of damages are excluded from warranty.

Read the manual carefully before the initial start-up. The producer reserves the right to change the herein described specifications in case of technical advance of the product.

8 +optris

Avoid abrupt changes of the ambient temperature.

 Avoid static electricity, arc welders, and induction heaters. Keep away from very strong EMF (electromagnetic fields).

• In case of problems or questions which may arise when you use the infrared camera, please contact our service department.

▶ All accessories can be ordered according to the referred part numbers in brackets [].

1.2 Warranty

Each single product passes through a quality process. Nevertheless, if failures occur contact the customer service at once. The warranty period covers 24 months starting on the delivery date. After the warranty is expired the manufacturer guarantees additional 6 months warranty for all repaired or substituted product components. Warranty does not apply to damages, which result from misuse or neglect. The warranty also expires if you open the product. The manufacturer is not liable for consequential damage or in case of a non-intended use of the product.

If a failure occurs during the warranty period the product will be replaced, calibrated or repaired without further charges. The freight costs will be paid by the sender. The manufacturer reserves the right to exchange components of the product instead of repairing it. If the failure results from misuse or neglect the user has to pay for the repair. In that case you may ask for a cost estimate beforehand.

General Notes

1.3 Scope of delivery

PI 160, PI 200, PI 230, PI 400, PI 450, PI 450 G7, PI 640, PI 640 G7, PI 1M or PI 05M incl. 1 lens

- USB-cable: 1 m (standard scope of supply, no IP67 protection class)
 1 m, 3 m, 5 m, 10 m, 20 m (optional, for industrial applications, with IP67)
- Table tripod
- Process interface cable incl. terminal block (1 m)
- Software package PI Connect
- · Operators manual
- Aluminum case
- PI 450/ 450 G7/ 640/ 640 G7 only: robust hard transport case (IP67)
- PI 200/ 230 only: focusing tool for VIS camera

1.4 Maintenance

Never use cleaning compounds which contain solvents (neither for the lens nor for the housing).

1.4.1 Cleaning

Blow off loose particles using clean compressed air. The lens surface can be cleaned with a soft, humid tissue moistened with water or a water based glass cleaner.

1.5 Model overview

The cameras of the PI-series are available in the following basic versions:

Modell	Model code	Temperature range	Spectral range	Frame rate	Typical applications
PI 160	IR	-20 to 900 °C 200 to 1500 °C (optional)	7.5 - 13 µm	120 Hz	Surface measurements in industrial application
PI 200/ PI 230	BI-SPECTRAL	-20 to 900 °C 200 to 1500 °C (optional)	7.5 - 13 µm	128 Hz	Synchronous recording of VIS and IR videos and images
PI 400/ PI 450	IR	-20 to 900 °C 200 to 1500 °C (optional for PI 400)	7.5 - 13 µm	80 Hz	Real-time thermographic images in high speed; Detection of smallest temperature differences (Pl450)
PI 450 G7	IR	200 to 1500 °C	7.9 µm	80 Hz/ 27 Hz	Measurement of glass (with Line-Scanning mode)
PI 640	IR	-20 to 900 °C	7.5 - 13 µm	32 Hz	Pin-sharp radiometric recordings in real time
PI 640 G7	IR	200 to 1500 °C	7.9 µm	32 Hz	Measurement of glass (with Line-Scanning mode)
PI 1M	IR	450 to 1800 °C	0.85 - 1.1 μm	Up to 1 kHz	Measurement of metallic surfaces, graphite or ceramics with short wavelengths
PI 05M	IR	900 bis 2000 °C	500 – 540 nm	Up to 1 kHz	Measurement of metallic surfaces, graphite or ceramics with short wavelengths

Table 1: Model overview

2 Technical Data

2.1 General specifications

Environmental rating:	IP67 (NEMA-4)
Ambient temperature:	050 °C [PI 160/ PI 2xx/ PI 400/ PI 640/ PI 640 G7] 550 °C [PI 1M/ PI 05M] 070 °C [PI 450/ PI 450 G7]
Storage temperature:	-4070 °C (-4085 °C [PI 450/ PI 450 G7])
Relative humidity:	1095 %, non-condensing
Material (housing):	Aluminum, anodized
Dimensions:	PI 160/ PI 200/ PI 230: 45 x 45 x 62 - 65 mm (depending on lens) PI 400/ 450 (450 G7)/ 640 (640 G7)/1M/ 05M: 46 x 56 x 86 - 90 mm (depending on lens)
Weight:	PI 160: 195 g PI 200/ 230: 215 g PI 400/ PI 450 (450 G7)/ PI 640 (640 G7)/PI 1M/ 05M: 320 g
Cable length (USB 2.0):	1 m (standard), 3 m, 5 m, 10 m, 20 m
Vibration ¹⁾ :	IEC 60068-2-6 (sinus shaped)

12 \$\displaystyle{\psi}\text{optris}\$

	IEC 60068-2-64 (broadband noise)
Shock ¹⁾ :	IEC 60068-2-27 (25 g and 50 g)

1) Used standards for vibration and shock:

```
IEC 60068-1:1988 + Corr. 1988 + A1: 1992 DIN EN 60068-1:1995-03
"Umweltprüfungen - Teil 1: Aligemeines und Leitfaden"
IEC 60068-2-6:2007
                                 DIN EN 60068-2-6; VDE 0468-2-6:2008-10
Umgebungseinflüsse - Teil 2-8. Prüfverfahren - Prüfung Fc. Schwingen (ahusfürmig)*
IEC 60068-2-27:2008
                                 DIN EN 60068-2-27; VDE 0468-2-27:2010-02
"Umgebungseinflüsse - Teil 2-27: Prüfverfahren - Prüfung Ea und Leitfaden: Schocken"
IEC 60068-2-47:2005
                                 DIN EN 60068-2-47:2006-03
"Umgebungseinflüsse - Teil 2-47: Prüfverfahren - Betestigung von Prüflingen für
Schwing-, Sto8- und ähnliche dynamische Prüfungen-
                                 DIN EN 60068-2-64; VDE 0468-2-64:2009-04
IEC 60068-2-64:2008
"Umgebungseinflüsse - Teil 2-64: Profverfahren - Profung Fh. Schwingen, Breitbandrauschen
(digital geregeit) und Leitfaden"
```

Figure 1: Used standards

Stress program (camera in operation):

Shock, half sinus 25 g – testing Ea 25 g (acc. IEC 60068-2-27)				
Acceleration	245 m/s ²	(25 g)		
Pulse duration	11 ms			

Number of directions	6	(3 axes with 2 directions each)				
Duration	600 Shocks	(100 Shocks each direction)				
Shock, half sinus 50 g – testing	g Ea 50 g (acc. IEC 60068	-2-27)				
Acceleration	490 m/s ²	(50 g)				
Pulse duration	11 ms					
Number of directions	6	(3 axes with two directions each)				
Duration	18 Shocks	(3 Shocks each direction)				
Vibration, sinus shaped – testi	Vibration, sinus shaped – testing Fc (acc. IEC60068-2-6)					
Frequency range	10 - 500 Hz					
Acceleration	29.42 m/s ²	(3 g)				
Frequency change	1 Octave/ min					
Number of axes	3					
Duration	1:30 h	(3 x 0.30 h)				

Vibration, broadband noise -	/ibration, broadband noise – testing Fh (acc. IEC60068-2-64)			
Frequency range	10 - 2000 Hz			
Acceleration	39.3 m/s ²	(4.01 grms))		
Frequency spectrum	10 - 106 Hz	0.9610 (m/s ²) ² /Hz	(0.010 g ² /Hz)	
	106 - 150 Hz	+6 dB/ Octave		
	150 - 500 Hz	1.9230 (m/s ²) ² /Hz	(0.020 g ² /Hz)	
	500 - 2000 Hz	-6 dB/ Octave		
	2000 Hz	0.1245 (m/s ²) ² /Hz	(0.00126 g ² /Hz)	
Number of axes	3			
Duration	3 h	(3 x 1 h)		

2.2 Electrical specifications

Power Supply:	5 VDC (powered via USB 2.0 interface)
Current draw:	Max 500 mA
AO: Output Process Interface (PIF out)	0 - 10 V (Main measure area, measure area, internal temperature, flag status, alarm, frame sync, fail-safe, external communication) ▶ Appendix F – Wiring diagrams PIF]
Al: Input Process Interface (PIF in)	0 - 10 V (Emissivity, ambient temperature, reference temperature, flag control, triggered recording, triggered snapshots, triggered line-scanner, uncommitted value) [▶ Appendix F – Wiring diagrams PIF]
DI: Digital Input Process Interface	Flag control, triggered recording, triggered snapshots, triggered line-scanner [► Appendix F – Wiring diagrams PIF]
Digital interface:	USB 2.0

16 +optris

2.3 Measurement specifications

	<u>PI 160</u>	<u>PI 200</u> 1)	<u>PI 230</u> 1)		
Temperature ranges	-20100 °C; 0250 °C; (20) 150900 °C ⁴ ; Option: 2001500 °C ⁵)				
Spectral range	7.5 - 13 μm				
Detector	UFPA, 160 x 120 pixel @ 120 Hz	UFPA, 160 x 120 pixel @ 128 Hz³) 640 x 480 pixel (visual camera)			
Lenses (FOV)	6° x 5° (F=1,6); 23° x 17° (F=0,8); 41° x 31° (F=1); 72° x 52° (F=1)				
Optics (FOV) – visual camera	-	54° x 40°	30° x 23°		
System accuracy ²⁾	±2°C or ±2 %				
Temperature resolution (NETD):	0.08 K with 23°; 0,3 K with 6°; 0.1 K with 41° and 72°				
Warm-up time	10 min				
Emissivity	0.1001.100				
Software	PIConnect				

¹⁾ For an ideal combination of IR and VIS image we recommend the 41° lens for Pl200 and the 23° lens for Pl230

²⁾ At ambient temperature 23±5 °C; whichever is greater

³⁾ The following options can be set: Option 1 (IR with 96 Hz at 160 x 120 px; VIS with 32 Hz at 640 x 480 px); Option 2 (IR with 128 Hz at 160 x 120 px; VIS with 32 Hz at 596 x 447 px)

⁴⁾ Accuracy statement effective from 150 °C

⁵⁾ Not available for 72° lenses

	<u>PI 400</u>	<u>PI 450</u>	<u>PI 450 G7</u>	
Temperature ranges	-20100 °C; 0250 °C; (20) 150.	900 °C ³⁾ ; Option: 2001500 °C ⁴⁾	2001500 °C	
Spectral range	7.5 - 13 μm		7.9 µm	
Detector	UFPA, 382 x 288 pixel @ 80 Hz (switchable to 27 Hz)			
Lenses (FOV)	13° x 10° (F=1), 29° x 22° (F=0,8), 53° x 40° (F=0,8); 80° x 56° (F=0,8)			
Microscope lens (FOV)	-	10° x 8° (F=1,1)	-	
System accuracy ²⁾	±2°C or ±2 %			
Temperature resolution (NETD):	$0.08~\text{K}^{\text{1}}$ with $29^{\circ},38^{\circ},53^{\circ},62^{\circ}$ and $80^{\circ};0.1~\text{K}^{\text{1}})$ with 13°	0.04 K¹¹ with 29°, 38°, 53°, 62° and 80°; 0.06 K¹¹ with 13°	130 mK (T _{obj} = 650 °C)	
Warm-up time	10 min			
Emissivity	0.1001.100			
Software	PI Connect			

¹⁾ Value is valid at 40 Hz and 25°C room temperature

²⁾ At ambient temperature 23±5 °C; whichever is greater ³⁾ Accuracy statement effective from 150 °C

⁴⁾ Not available for 80° lenses

optris

	<u>PI 640</u>	<u>PI 640 G7</u>
Temperature ranges	-20100 °C; 0250 °C; (20) 150900 °C ⁴⁾ Option: 2001500 °C ⁵⁾	2001500 °C
Spectral range	7.5 - 13 µm	7,9 µm
Detector	640 x 480 Pi	PA, ixel @ 32 Hz xel @ 125Hz
Lenses (FOV)	15° x 11° (F=1); 33° x 25° (F=0,8);	60° x 45° (F=0,8); 90° x 64° (F=0,8)
Microscope lens (FOV)	12° x 9° (F=1,1)	-
System accuracy	±2°C 0	r ±2 %²)
Temperature resolution (NETD):	0.075 K ¹⁾ with 33°	130 mK (T _{obj} = 650 °C)
Warm-up time	10	min
Emissivity	0.100.	1.100
Software	PI Co	nnect

¹⁾ Value is valid at 32 Hz and 25°C room temperature

²⁾ At ambient temperature 23±5 °C; whichever is greater
³⁾ +75 °C start temperature for optics with focal length f= 50 mm, f= 75 mm
⁴⁾ Accuracy statement effective from 150 °C

⁵⁾ Not available for 90° lenses

	<u>PI 1M</u>	<u>PI 05M</u>
Temperature ranges	4503)1800 °C (27 Hz mode) 5003)1800 °C (80 Hz and 32 Hz mode) 6003)1800 °C (1 kHz mode)	900 2000 °C (27 Hz mode) 950 2000 °C (80 Hz and 32 Hz mode) 1100 2000 °C (1 kHz mode)
Spectral range	0,85 - 1,1 μm	500 - 540 nm
Detector	382 x 288 pixel @ 80 H 72x56 pixel @ 1 kHz (1 ms real-time analog ou	OS, ixel @ 32 Hz iz/ (switchable to 27 Hz) itput (0-10 V) from 8x8 pixel (freely selectable)) me analog output (0-10 V) from 8x8 pixel (freely selectable))
Lenses (FOV)	FOV@764x480 px: 9°x 5° (F=2,8), 13°x 8° (F=2,4), 26°x16° (F=1,4), 39°x 25° (F=1,4) FOV@382x288 px: 4°x 3°, 7°x 5°, 13°x 10°, 20°x 15°	FOV@764x480 px: 26°x 16° (F=1,4) FOV@382x288 px: 13°x 10°
System accuracy	±1 % of reading (object temperature <1400 °C)	±1,5 % of reading
Temperature resolution (NETD):	< 1K (700 °C) < 2K (1000 °C)	< 2 K (1400 °C) for 27 Hz, 32 Hz, 80 Hz < 2,5 K (1400 °C) for 1 kHz
Warm-up time	10	min
Emissivity	0.100.	1.100
Software	PI Co	onnect

¹⁾ Value is valid at 32 Hz and 25°C room temperature

²⁾ At ambient temperature 23 \pm 5 °C; whichever is greater ³⁾ +75 °C start temperature for optics with focal length f= 50 mm, f= 75 mm

20 \$\phi\nuteristarrow

2.4 Optical specifications

Make sure that the focus of thermal channel is adjusted correctly. If necessary, focus the
thermal imaging camera with the optics (Figure 2). The turning out of the optics leads to the
focus setting "near" and the turning in of the lens to the focus setting "infinity".

• The visual camera (PI 200/230 only) is adjusted with the supplied focusing tool (**Figure 3**). For this purpose, the focusing tool with the two pins is placed on the visual camera and is focused to "near" by a left turn and focused to "infinity" by a right rotation.

Figure 2: PI 200/ 230 with visual camera



Figure 3: Focusing tool for VIS camera

1 IR channel 2 VIS channel

For the PI 1M and PI 05M camera, you must first unscrew the protective tube in order to be able to focus the camera (**Figure 4**).

Figure 4: PI 1M/ PI 05M

The variety of different lenses offers the possibility to precisely measure objects in different distances. We offer lenses for close, standard distances and large distances. Different parameters are important if using infrared cameras. They display the connection between the distance of the measured object and the size of the pixel (**Table 2**).

With the help of BI-SPECTRAL technology at PI 200/230, a visual image (VIS) can be combined with a thermal image (IR). Both can be finally captured time synchronously.

22 **\$**optris

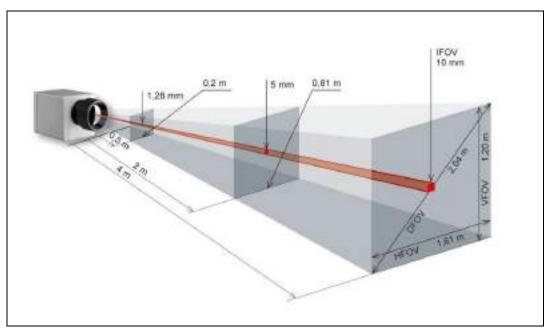


Figure 5: Measurement field of the infrared camera optris® PI representing the 23° x 17° lens

- **HFOV**: Horizontal enlargement of the total measuring at object level
- **VFOV**: Vertical enlargement of the total measuring at object level
- IFOV: Size at the single pixel at object level
- **DFOV**: Diagonal dimension of the total measuring field at object level
- MFOV: Recommended, smallest measured object size of 3 x 3 pixel

The following tables with examples showing what spot sizes and pixel sizes will be reached in which distance. For individual configuration there are different lenses available. Wide angle lenses have a radial distortion due to their large opening angle; the software PIConnect has an algorithm which corrects this distortion. As an alternative to the tables below, the optics calculator can also be used on the optris website (http://www.optris.com/optics-calculator).

24 optris

Table 2:

PI 160 / 200	f.		tueut				Dist	ance to	meas	ureme	nt obje	ct [m]				
	Focal langth [mm]	Angle	Winimum meissuren distance*		0.02	0.1	0.2	0.3	0.5	,	2	4	6	10	30	100
1.0000000000000000000000000000000000000	10	23*	0.2 m	HEOV [n]	0.012	0.043	0.08	0.12	0.21	0.41	0.81	1.62	2.44	4.1	122	40.6
Standard lens		17*		VFOV [n]	0.009	0.032	0.06	0.09	0.15	0.39	0.60	1.21	1.81	3.0	9.0	30.1
		29"		DFOV [n]	0.015	0.054	0.10	0.16	0.26	0.51	1.01	2.02	3.03	5.1	152	50.5
	2.48 mrad		IFOV (mm)	0.1	0.3	0.5	0.8	1.3	25	5.0	9.5	14.9	24.8	74.4	248.0	
06 365 Telephoto lens	36.5	6*	0.5 m	HFOV[n]					0.06	0.11	0.23	0.45	88.9	1.1	3.4	11.3
		5"		VFOV [n]					0.04	0.09	0.17	0.34	8.51	8.0	25	8.5
		8"		DFOV [N]					0.07	0.14	0.28	0.57	8.85	1.4	42	14.2
		0.70 mrad		IFOV [mm]					0.4	0.7	1.4	2.8	4.2	7.0	21.1	70.4
048	5.7	41*	0.2 m	HFOV [n]	0.022	0.042	0.16	0.23	0.38	0.76	151	3.00	4.50	7.5	225	74.9
Wide angle lens		31°		VFOV [n]	0.016	0.069	0.11	0.17	0.28	0.55	1.10	2.19	3.28	5.5	164	54.5
		51*		OFOV[n]	0.027	0.101	6.10	0.29	0.47	0.94	1.96	3.72	5.57	9.3	27.8	92.7
		4.39 mrad		IFOV (mm)	ut	0.4	0.8	1.3	2.2	4.4	8.8	17.5	26.3	43.9	131.6	438.6
072	3.3	72°	0.2 m	HFOV[n]	0.039	0.152	129	0.43	0.72	1.42	2.94	5.66	8.49	14.1	424	141.4
Wide angle lens		52°		VFOV [n]	0.027	0.106	0.20	0.30	0.60	0.99	1.98	3.98	5.92	9.9	29.6	98.6
		89"		OFOV(n)	0.048	0.186	0.36	0.53	0.87	1.74	3.46	6.91	10.35	17.2	51.7	172.3
		7.51 mrad		IFOV (mm)	0.2	0.8	1.5	23	3.8	7.5	15.0	30.4	45.0	75.1	225.2	750.8

^{*} Note: The accuracy of measurement can be outside of the specifications for distances below the defined minimum distance.

PI 400 / 450	gth	ment	Angle				Dist	tance t	o meas	ureme	nt obje	ect [m]				
PI 450 G7 382 x 288 px	400 / 450 450 G7 E E E E E E E E E E E E E E E E E E	Minimum measurement distance*			0.02	0.1	0.2	0.3	0.5	1	2	4	6	10	30	100
O29 Standard lens	18.7	0,2 m	29° 22° 37°	HFOV [m] VFOV [m] DFOV [m]		0.060 0.045 0.074	0.11 0.08 0.14	0.16 0.12 0.20	0.27 0.20 0.33	0.53 0.40 0.66	1.0 0.78 1.3	2.1 1.6 2.6	3.1 2.3 3.9	5.2 3.9 6.5	15.6 11.7 19.5	52.1 39.0 65.1
O13 Telephoto lens	41	0.5 m	1.34 mrad 13° 10° 17° 0.61 mrad	HFOV [mm] VFOV [m] DFOV [m] IFOV [mm]		0.1	0.3	0.4	0.7 0.12 0.09 0.15 0.3	0.23 0.17 0.29 0.6	0.47 0.35 0.58 1.2	0.94 0.70 1.17 2.5	1.40 1.05 1.75 3.7	13.4 2.3 1.7 2.9 6.1	7.0 5.2 8.8 18.4	133.7 23.4 17.5 29.2 61.2
O53 Wide angle lens	10.5	0,2 m	53° 40° 66° 2.38 mrad	HFOV [m] VFOV [m] DFOV [m] IFOV [mm]		0.11 0.08 0.14 0.2	0.21 0.15 0.26 0.5	0.31 0.23 0.38 0.7	0.51 0.37 0.63 1.2	1.0 0.73 1.2 2.4	2.0 1.4 2.5 4.8	4.0 2.9 4.9 9.5	6.0 4.3 7.4 14.3	9.9 7.2 12.2 23.8	29.7 21.6 36.7 71.5	99.0 71.9 122.3 238.4
O80 Super wide angle lens	7.7	0.2 m	80° 56° 97° 3.25 mrad	HFOV [m] VFOV [m] DFOV [m] IFOV [mm]		0.182 0.119 0.218 0.3	0.35 0.23 0.41 0.7	0.84 0.55 1.00 1.6	0.84 0.54 1.00 1.6	1.65 1.08 1.97 3.3	3.29 2.14 3.92 6.5	6.55 4.28 7.83 13.0	9.82 6.41 11.73 19.5	16.4 10.7 19.5 32.5	49.0 32.0 58.5 97.4	163.4 106.6 195.1 324.7

^{*} Note: The accuracy of measurement can be outside of the specifications for distances below the defined minimum distance.

26 \$\displaystyle{\phi}\text{optris}\$

PI 640 PI 640 G 7	ş		nent	Distance to measurement object [m]												
	Focal length (mm)	Angle	Minimum measurement distance		9.1	0.2	0.3	0.5	١,	2		6	10	30	100	
O33 Standard lens	18.7	33" 25" 41" 0.91 mod	0.2 m	HEOV [m] VEOV [m] DEOV [m] IFOV [mm]	0.068 0.051 0.085 0.1	0.13 0.09 0.16 0.2	0.19 0.14 0.23 6.3	0.31 0.23 0.38 0.6	9.60 9.45 9.75 0.9	1.20 0.89 1.49 1.8	238 177 297 36	3.57 2.65 4.45 5.6	59 44 74 91	17.8 13.2 22.2 27.3	59.3 44.2 74.0 90.9	
O15 Tele lens	415	15" 11" 19" 6,41 mad	0.5 m	HEOV [m] VEOV [m] DEOV [m] IFOV [mm]				0.13 0.10 0.17 0.2	0.26 0.20 0.33 0.4	0.52 0.39 0.68 0.8	1.05 0.79 1.31 1.6	1.57 1.18 1.96 2.6	26 20 33 41	7.8 6.9 9.8 12.3	26.1 19.6 32.7 41.0	
O80 Wide angle lens	105	60° 45° 75° 1.60 mad	0.2 m	HEOV [m] VEOV [m] DEOV [m] IFOV [mm]	0.128 0.091 0.157 0.2	0.25 0.18 0.30 0.3	0.36 0.26 0.44 0.5	0.58 0.42 0.72 0.8	1.17 0.83 1.43 1.6	2.32 1.66 2.85 3.2	4.63 3.31 5.69 6.5	6.94 4.96 8.52 9.7	11.6 8.3 14.2 16.2	34 f 24.7 42.6 48.6	115.4 82.4 141.8 161.9	
O90 Super wide angle lons	7.7	90" 64° 111" 2.21 mrad	0.7 m	HEOV [w] VEOV [m] DEOV [m]	0.226 0.138 0.260 0.2	0.43 0.27 0.50 0.4	0.63 0.39 0.73 6.7	1.03 0.64 1.21 1.1	2.03 1.27 2.39 2.2	4.04 2.53 4.76 4.4	8 DE 5 DS 9 50 8 8	12.07 7.57 14.24 13.2	20.1 12.6 23.7 22.1	60.1 37.8 71.1 66.2	200.8 125.9 237.0 220.8	

^{*} Note: The accuracy of measurement can be outside of the specifications for distances below the defined minimum distance.

PI 1M /	igth	ment		Distance to measurement											
PI 05M ¹⁾ 382 x 288 px	Focal length [mm]	Minimum measurement distance*	Angle		0.1	0.2	0.3	0.5	1	2	4	6	10	30	100
OF16	16	0.2 m	20°	HFOV [m]		0.07	0.11	0.18	0.36	0.72	1.43	2.15	3.6	10.7	35.8
			15°	VFOV [m]		0.05	0.08	0.14	0.27	0.54	1.08	1.62	2.7	8.1	27.0
			25°	DFOV [m]		0.09	0.13	0.22	0.45	0.90	1.79	2.69	4.5	13.5	44.9
			0.94 mrad	IFOV [mm]		0.2	0.3	0.5	0.9	1.9	3.8	5.6	9.4	28.1	93.8
OF25	25	0.5 m	13°	HFOV [m]	0.023	0.05	0.07	0.11	0.23	0.46	0.92	1.38	2.3	6.9	22.9
			10°	VFOV [m]	0.017	0.03	0.05	0.09	0.17	0.35	0.69	1.04	1.7	5.2	17.3
			16°	DFOV [m]	0.029	0.06	0.09	0.14	0.29	0.57	1.15	1.72	2.9	8.6	28.7
			0.60 mrad	IFOV [mm]	0.1	0.1	0.2	0.3	0.6	1.2	2.4	3.6	6.0	18.0	60.0
OF50	50	1.5 m	7°	HFOV [m]				0.06	0.11	0.23	0.46	0.69	1.1	3.4	11.5
			5°	VFOV [m]				0.04	0.09	0.17	0.35	0.52	0.9	2.6	8.6
			8°	DFOV [m]				0.07	0.14	0.29	0.57	0.86	1.4	4.3	14.4
			0.30 mrad	IFOV [mm]				0.2	0.3	0.6	1.2	1.8	3.0	9.0	30.0
OF75	75	2.0 m	4°	HFOV [m]					0.08	0.15	0.31	0.46	0.8	2.3	7.6
			3°	VFOV [m]					0.06	0.12	0.23	0.35	0.6	1.7	5.8
			5°	DFOV [m]					0.10	0.19	0.38	0.57	1.0	2.9	9.6
			0.20 mrad	IFOV [mm]					0.2	0.4	0.8	1.2	2,0	6.0	20.0

^{*} Note: The accuracy of measurement can be outside of the specifications for distances below the defined minimum distance.

¹⁾ PI 05M is only available with OF25 optics

28 **\$**optris

PI 1M /	igth	ment					Distan	ce to m	easure	ment o	bject [r	n]			
PI 05M ¹⁾ 764 x 480 px	Focal length [mm]	Minimum measurement distance*	Angle		0,1	0,2	0,3	0,5	1	2	4	6	10	30	100
OF16	16	0.2 m	39°	HFOV [m]		0.14	0.21	0.36	0.72	1.43	2.87	4.30	7.2	21.5	71.6
			25°	VFOV [m]		0.09	0.14	0.23	0.45	0.90	1.80	2.70	4.5	13.5	45.0
			46°	DFOV [m]		0.17	0.25	0.42	0.85	1.69	3.38	5.08	8.5	25.4	84.6
			0.94 mrad	IFOV [mm]		0.2	0.3	0.5	0.9	1.9	3.8	5.6	9.4	28.1	93.8
OF25	25	0.5 m	26°	HFOV [m]	0.046	0.09	0.14	0.23	0.46	0.92	1.83	2.75	4.6	13.8	45.8
			16°	VFOV [m]	0.029	0.06	0.09	0.14	0.29	0.58	1.15	1.73	2.9	8.6	28.8
			30°	DFOV [m]	0.054	0.11	0.16	0.27	0.54	1.08	2.17	3.25	5.4	16.2	54.1
			0.60 mrad	IFOV [mm]	0.1	0.1	0.2	0.3	0.6	1.2	2.4	3.6	6.0	18.0	60.0
OF50	50	1.5 m	13°	HFOV [m]				0.11	0.23	0.46	0.92	1.38	2.3	6.9	22.9
			8°	VFOV [m]				0.07	0.14	0.29	0.58	0.86	1.4	4.3	14.4
			15°	DFOV [m]				0.14	0.27	0.54	1.08	1.62	2.7	8.1	27.1
			0,30 mrad	IFOV [mm]				0.2	0.3	0.6	1.2	1.8	3.0	9.0	30.0
OF75	75	2,0 m	9°	HFOV [m]					0.15	0.31	0.61	0.92	1.5	4.6	15.3
			5°	VFOV [m]					0.10	0.19	0.38	0.58	1.0	2.9	9.6
			10°	DFOV [m]					0.18	0.36	0.72	1.08	1.8	5.4	18.0
			0.20 mrad	IFOV [mm]					0.2	0.4	0.8	1.2	2.0	6.0	20.0

^{*} Note: The accuracy of measurement can be outside of the specifications for distances below the defined minimum distance.

¹⁾ PI 05M is only available with OF25 optics

Mechanical Installation 29

3 Mechanical Installation

3.1 Dimensions

The PI is equipped with two metric M4 thread holes on the bottom side (6 mm depth) and can be installed either directly via these threads or with help of the tripod mount (also on bottom side).

The tightening torque of the M4 screws for mounting the PI camera should be between 1 ... 1.5 Nm and must not exceed 2 Nm.

30 #optris

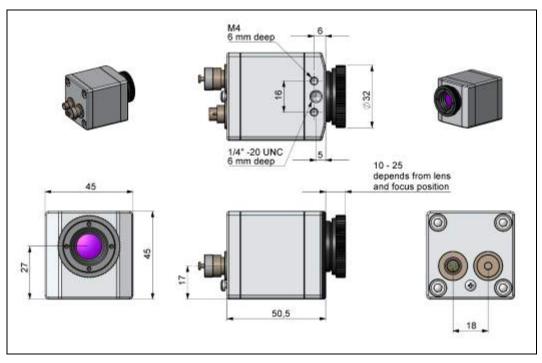


Figure 6: PI 160, dimensions [mm]

Mechanical Installation 31

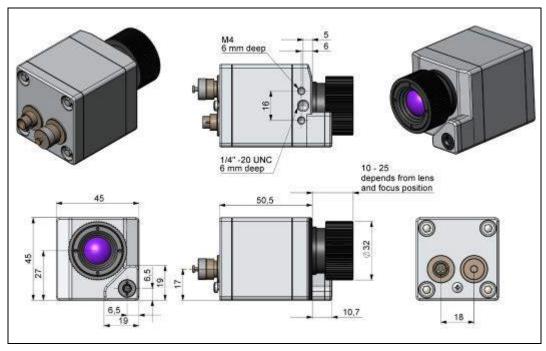


Figure 7: PI 200/ 230, dimensions [mm]

32 **o**ptris

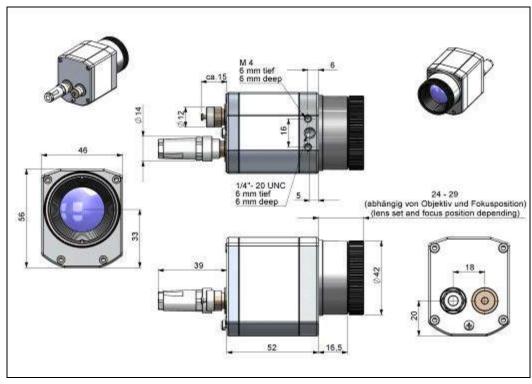
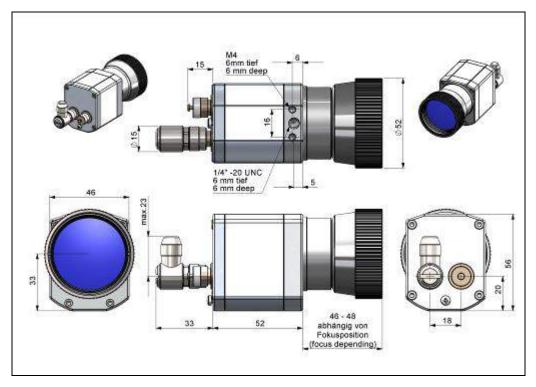



Figure 8: PI 400/ PI 450/ PI 450 G7/ PI 640/ PI 640 G7, optics 29°/33° & 53°/60°, dimensions [mm]

Mechanical Installation 33

Figure 9: PI 400/ PI 450/ PI 450 G7/ PI 640/ PI 640 G7, optics 13°/15°, dimensions [mm]

34 **o**ptris

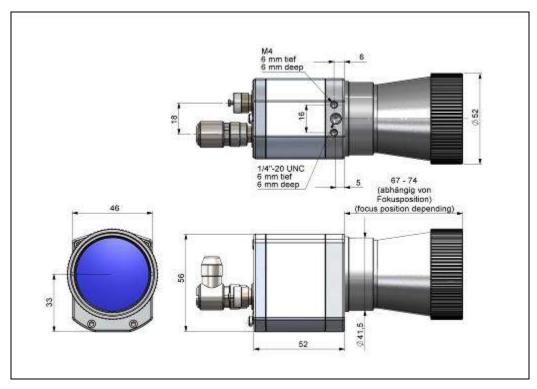


Figure 10: PI 450/ PI 640, microscope optics 10°/12°, dimensions [mm]

Mechanical Installation 35

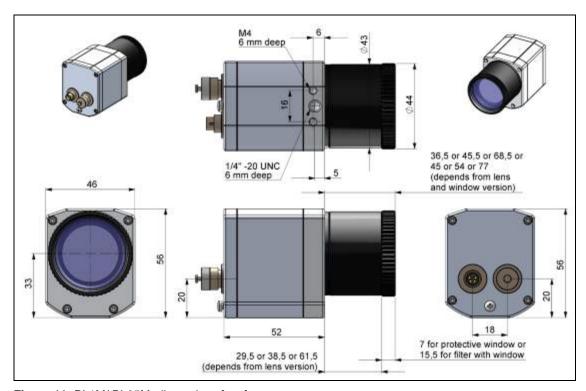


Figure 11: PI 1M/ PI 05M, dimensions [mm]

36 ♦optris

3.2 Changing the lens

The PI camera is offered with several different lenses (lenses depending on the camera variant). To change a lens, rotate it as shown below. For the PI 1M and PI 05M, the protective tube must first be turned off (see **Figure 4**).

Figure 12: Change lens for PI 160/ 2xx/ 4xx/ 640

Figure 13: Change lens for PI 1M and PI 05M

Mechanical Installation 37

3.3 Fixing the focus of the lens (only for PI 1M and PI 05M)

With the PI 1M and PI 05M, it is possible to fix the focus of the lens. To do this, unscrew the protective tube of the camera (see **Figure 4**). There are three small holes on the lens. Take the three screws that are included and attach them to the three holes. The focus of the lens is now fixed. Alternatively, the two knurled screws supplied can also be used.

Figure 14: Lens for PI 1M / PI 05M

Figure 15: Fixing the focus for PI 1M / PI 05M

38 optris

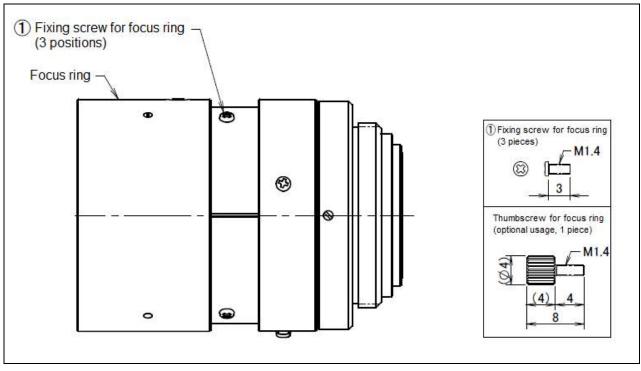


Figure 16: Focusing screws for focus ring

Mechanical Installation 39

3.4 Mounting accessories (optional)

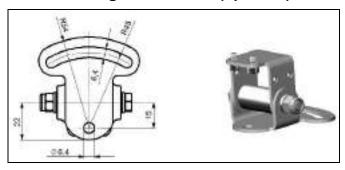


Figure 17: Mounting base, stainless steel, adjustable in 2 axes [Part No.: ACPIMB]

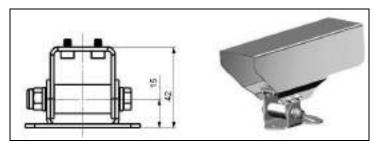


Figure 18: Protective housing, stainless steel, Incl. Mounting base [Part No.: ACPIPH]

3.5 High temperature accessories

3.5.1 CoolingJacket

- The IR camera can be used at ambient temperature up to 50 °C (up to 70 °C with PI 450/ PI 450 G7). For higher temperatures (up to 180 °C) the CoolingJacket is provided.
- For detailed information see installation manual.

Mechanical Installation 41

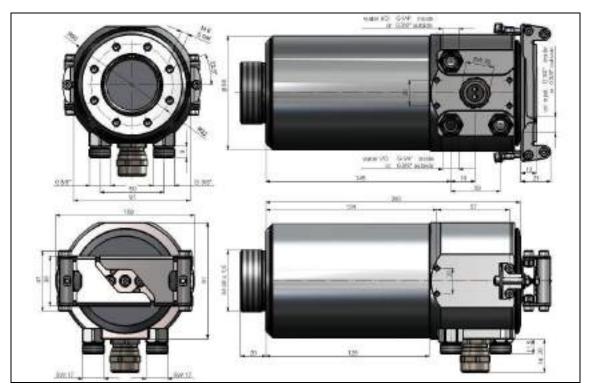


Figure 19: CoolingJacket – Dimensions

42 +optris

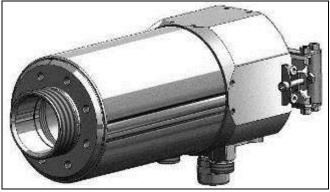


Figure 20: CoolingJacket for PI [Part No.: ACPIxxxCJ]

Figure 21: CoolingJacket with mounting bracket

3.5.2 CoolingJacket Advanced

- The CoolingJacket Advanced is available as Standard Version and Extended Version.
- The IR camera can be used at ambient temperature up to 50 °C (up to 70 °C with PI 450/ PI 450 G7). For higher temperatures (up to 315 °C) the CoolingJacket Advanced is provided.
- For detailed information see installation manual.

Mechanical Installation 43

Standard Version

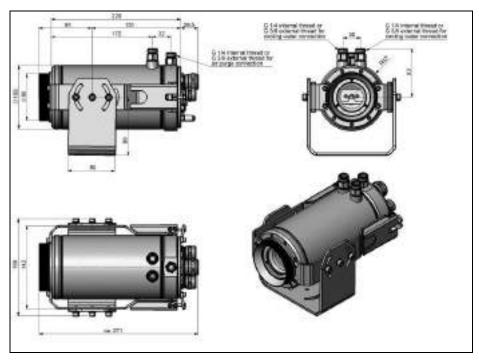


Figure 22: CoolingJacket Advanced [Part No.: ACPIxxxCJAS], Standard Version - Dimensions

44 + One of the second second

Extended Version

The Extended Version is provided for applications of the PI series with the PI Netbox and industrial PIF or the USB Server Gigabit and industrial PIF. Both PI Netbox and industrial PIF or USB Server Gigabit and industrial PIF can be integrated in the CoolingJacket.

Figure 23: Cooling Jacket Advanced (Extended Version) with PI Netbox and industrial PIF

Figure 24:Cooling Jacket Advanced (Extended Version) with USB-Server and industrial PIF

Mechanical Installation 45

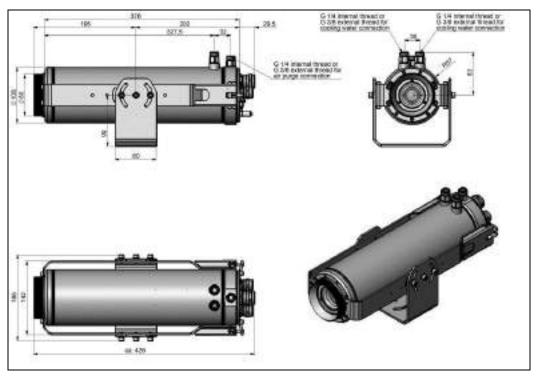


Figure 25: CoolingJacket Advanced [Part No.: ACPIxxxCJAE], Extended Version – Dimensions

46 \$\phi\text{optris}\$

3.5.3 Outdoor protective housing

- The infrared camera PI and the USB server can also be used for outdoor applications by using the outdoor protective housing.
- The outdoor protective housing can be used for any PI camera (lenses up to 90 ° FOV)
- In addition, the industrial PIF can be installed as an accessory without housing
- For detailed information see installation manual.

Figure 26: Outdoor protective housing for PI camera, USB server and industrial PIF

Electrical Installation 47

4 Electrical Installation

At the back side of the PI there are the two connector plugs. The left plug is for the USB cable. The right connector plug is only used for the process interface.

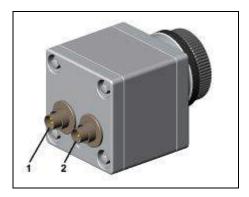


Figure 27: Backside of the camera with connectors

- 1 Plug for USB cable
- 2 Plug for PIF cable

48 \$\phi\text{optris}\$

4.1 Process interface

The process interface (electronics within cable as well as industrial interface) must be powered separately (5-24 VDC). Before switching on the power the PIF cable must be connected to the camera.

The PI is equipped with a process interface (cable with integrated electronics and terminal block), which can be programmed via the software as an Analog Input (AI) and Digital Input (DI) in order to control the camera or as an Analog Output (AO) in order to control the process. The signal level is always 0-10 V (DI = 24 V).

The process interface can be activated choosing the following options:

Analog Input (AI):	Emissivity, ambient temperature, reference temperature, flag control, triggered recording, triggered snapshots, triggered line-scanner, uncommitted value
Analog Output (AO):	Main measure area, measure area, internal temperature, flag status, alarm, frame sync, fail-safe, external communication
Digital Input (DI):	Flag control, triggered recording, triggered snapshots, triggered line-scanner

Electrical Installation

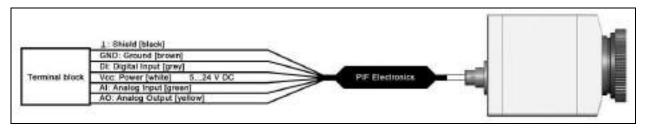


Figure 28: Configuration Standard Process Interface (PIF)

The standard process interface provides the following inputs and outputs:

<u>Name</u>	<u>Description</u>	max range ¹⁾ / status
Al	Analog input	0-10 V ²⁾
DI	Digital input (active-low = 00,6 V)	24 V
AO	Analog output Alarm output	0-10 V 0/ 10 V

¹⁾ Depending on supply voltage; for 0-10 V on the AO the PIF has to be powered with min. 12 V. The AI is designed for max. 24 V, the voltage level above 10 V is not interpreted

50 optris

4.1.1 PIN allocation

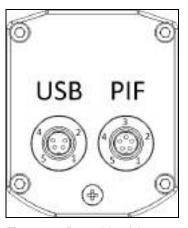


Figure 29: Rear side of the camera

USB	PIF
1 VCC	1 INT
2 GND	2 SDA (I ² C)
	3 SCL (I ² C)
4 D-	4 DGND
5 D+	5 3.3 V (Out)

Electrical Installation 51

If the process interface of the camera is directly connected to external hardware (without using the supplied PIF cable) an activation of the field "Support proprietary PIF cable" in the menu Tools/
Configuration/ Device (PIF) in the PIConnect software is necessary.

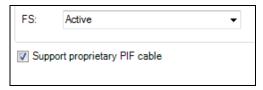


Figure 30: Support proprietary PIF cable

Consider that the input of the PIF is not protected if there is a direct PIF connection! A voltage > 3 V on the INT pin will destroy the device!

¹⁾ We recommend using only a switching contact between INT and DGND as external hardware (button, relay).

52 #optnis

4.1.2 Industrial Process Interface (optional)

For use in industrial environment the industrial process interface with 500 V ACRMS isolation voltage between PI and process is available (connection box with IP65, 5 m, 10 m or 20 m standard or high temperature cable for camera connection, terminal for process integration). [> Appendix F - Wiring diagrams PIF]

Pin assignment PIF cable (industrial process interface)

Figure 31: Connections of the industrial Process Interface

Electrical Installation

The industrial process interface provides the following inputs and outputs:

<u>Name</u>	<u>Description</u>	max range¹)/ status
A IN 1 / 2	Analog input 1 and 2	0-10 V ²⁾
D IN 1	Digital input (active-low = 00,6 V)	24 V
AO1/2/3	Analog output 1, 2 and 3 Alarm output 1, 2 and 3	0-10 V 0/ 10 V
DO1 / 2/ 3	Relay output 1, 2 and 3 3)	open/ closed (red LED on) / 030 V, 400 mA
FS	Fail-safe relay	open/ closed (green LED on)/ 030 V, 400 mA

¹⁾ depending on supply voltage; for 0-10 V on the AO the PIF has to be powered with min. 12 V.
²⁾ the AI is designed for max. 24 V, the voltage level above 10 V is not interpreted
³⁾ active if AO1, 2 or 3 is/ are programmed as alarm output

54 **o**ptris

The process interface has an integrated fail-safe mode. This allows to control conditions like interruption of cables, shut-down of the software etc. and to give out these conditions as an alarm.

Controlled conditions on camera and software	Standard Process interface ACPIPIF	Industrial Process interface ACPIPIF500V2CBxx
Interruption USB cable to camera	V	V
Interruption data cable camera - PIF	V	$\sqrt{}$
Interruption power supply PIF	V	V
Shut-down of PIConnect software	V	$\sqrt{}$
Crash of PIConnect software	•	$\sqrt{}$
Fail-Safe-Output	0 V at analog output (AO)	open contact (fail-safe relay)/ green LED off

Electrical Installation 55

4.2 Example for a Fail-Safe monitoring of the PI with a PLC

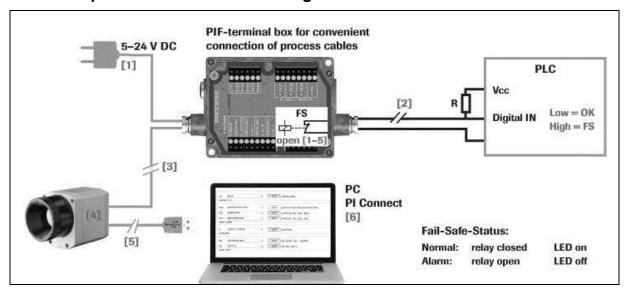


Figure 32: Fail-Safe monitoring states

Fail-Safe monitoring states

- [1] Breakdown of PIF power supply
- [2] Cable break of fail-safe cable
- [3] Interruption of cable PI-PIF
- [4] Malfunction of PI
- [5] Breakdown of PI power supply/ Interruption of USB cable
- [6] Malfunction of PIConnect software

56 \$\phi\text{optris}\$

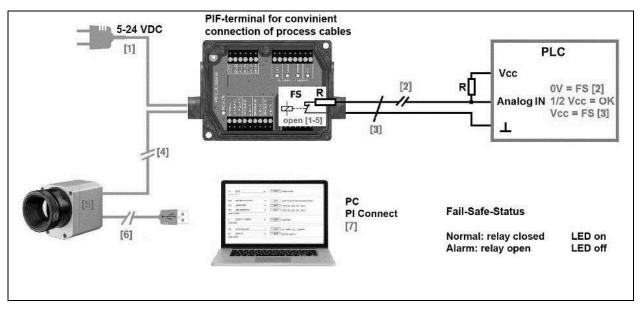


Figure 33: Fail-Safe monitoring states

Fail-Safe monitoring states

- [1] Breakdown of PIF power supply
- [2] Cable break of fail-safe cable
- [3] Short circuit of fail-safe cable
- [4] Interruption of cable PI-PIF

- [5] Malfunction of PI
- [6] Breakdown of PI power supply/ Interruption of USB cable
- [7] Malfunction of PIConnect software

Electrical Installation 57

4.3 USB cable extension

The maximum USB cable length is 20 m. For greater distances between PI and computer or for stand-alone solutions the optional PI NetBox or the USB Server Gigabit is provided:

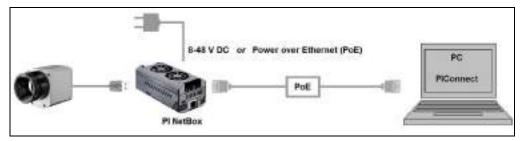


Figure 34: Ethernet direct communication with PI Netbox

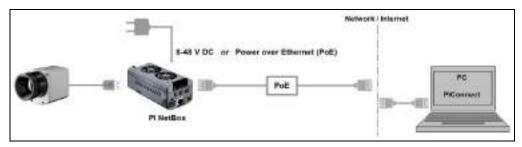


Figure 35: Ethernet network communication with PI Netbox

58 optris

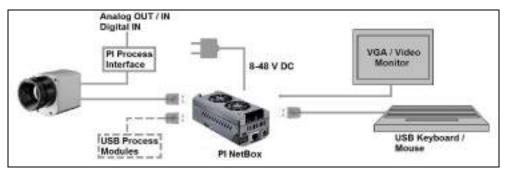


Figure 36: Stand-Alone operation with PI Netbox

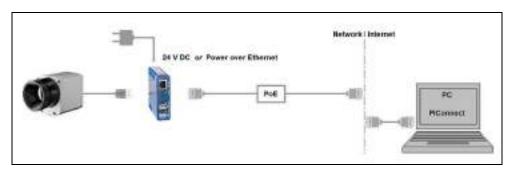


Figure 37: USB Server Gigabit

Software PI Connect 59

5 Software PI Connect

Minimum system requirements:

- Windows Vista, Windows 7, Windows 8, Windows 10
- USB interface
- · Hard disc with at least 30 MByte of free space
- At least 128 MByte RAM
- CD-ROM drive

A detailed description is provided in the software manual on the software CD. See also \mathtt{Help} menu in the PI Connect software ($\mathtt{Help} \rightarrow \mathtt{Documentation}$).

5.1 Installation and initial start-up

- Uninstall previous versions of the PI Connect before installing the new software. To this use the Uninstall icon in the start menu.
- All drivers are booted via Windows OS automatically. A driver installation is not necessary.
- By default the program starts automatically in the installed language.
- 1. Insert the installation CD into the according drive on your computer. If the autorun option is activated the installation wizard will start automatically.
- 2. Otherwise start setup.exe from the CD-ROM. Follow the instructions of the wizard until the installation is finished.

The installation wizard places a launch icon on the desktop and in the start menu: Start\Programs\PIConnect

- 3. To connect the camera to the PC, plug the USB cable to the camera first. Afterwards connect it with the PC (to disconnect the camera and the computer remove the USB cable from the computer first and then disconnect it from the camera).
- 4. Start the software.

Software PI Connect 61

At the initial start the software asks for the calibrations files which are available via internet or on the CD.

5. Install the calibration files at first start of the software.

Figure 38: Calibration data transfer

62 **\$**optris

After the calibration files have been installed the live image from the camera is shown inside a window on your PC screen.

- 6. Choose the desired language in the menu $Tools \rightarrow Language$.
- 7. Adjust the focus of the image by turning the exterior lens ring at the camera.

Software PI Connect 63

5.2 Software window

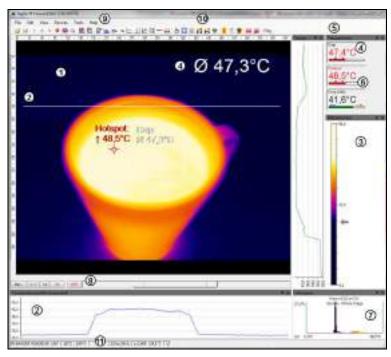


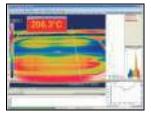
Figure 39: Software window

Status bar: Serial number, optic, temperature range, cursor position, device framerate/ display framerate, emissivity, ambient

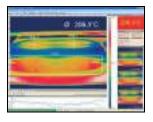
11

temperature, flag status

Software PI Connect 65

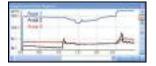

5.2.1 Basis features of the software PI Connect

Extensive infrared camera software


- · No restrictions in licensing
- Modern software with intuitive user interface
- Remote control of camera via software
- Display of multiple camera images in different windows
- Compatible with Windows Vista, 7, 8 and 10

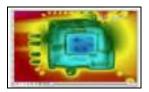
High level of individualization for customer specific display

- Various language option including a translation tool
- Temperature display in °C or °F
- Different layout options for an individual setup (arrangement of windows, toolbar)
- Range of individual measurement parameter fitting for each application
- Adaption of thermal image (mirror, rotate)
- Individual start options (full screen, hidden, etc.)

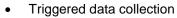

66 +optris

Video recording and snapshot function (IR or BI-SPECTRAL)

- Recording of video sequences and detailed frames for further analysis or documentation
- BI-SPECTRAL video analysis (IR and VIS) in order to highlight critical temperatures
- Adjustment of recording frequency to reduce data volume
- Display of snapshot history for immediate analysis


Extensive online and offline data analysis

- Analysis supported by measurement fields, hot and cold spot searching, image subtraction
- Real time temperature information within main window as digital or graphic display (line profile, temperature time diagram)
- Slow motion repeat of radiometric files and analysis without camera being connected
- Editing of sequences such as cutting and saving of individual images
- Various color palettes to highlight thermal contrasts


Software PI Connect 67

- Individual setup of alarm levels depending on the process
- BI-SPECTRAL process monitoring (IR and VIS) for easy orientation at point of measurement
- Definition of visual or acoustic alarms and analog data output
- Analog and digital signal input (process parameter)
- External communication of software via COM-Ports and DLL
- Adjustment of thermal image via reference values

Temperature data analysis and documentation

- Radiometric video sequences (*.ravi) radiometric snapshots (*.tiff)
- Text files including temp. information for analysis in Excel (*.csv, *.dat)
- Data with color information for standard programs such as Photoshop or Windows Media Player (*.avi, *.tiff)
- Data transfer in real time to other software programs DLL or COM-Port interfaces

68 +optris

6 Basics of Infrared Thermometry

Depending on the temperature each object emits a certain amount of infrared radiation. A change in the temperature of the object is accompanied by a change in the intensity of the radiation.

Searching for new optical material William Herschel by chance found the infrared radiation in 1800.

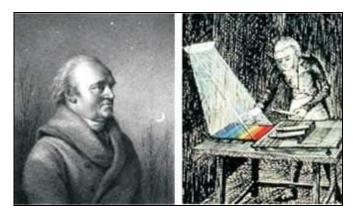


Figure 40: William Herschel (1738-1822)

He blackened the peak of a sensitive mercury thermometer. This thermometer, a glass prism that led sun rays onto a table made his measuring arrangement. With this, he tested the heating of different colors of the spectrum. Slowly moving the peak of the blackened thermometer through the colors of the spectrum, he

noticed the increasing temperature from violet to red. The temperature rose even more in the area behind the red end of the spectrum. Finally he found the maximum temperature far behind the red area.

Nowadays this area is called "infrared wavelength area".

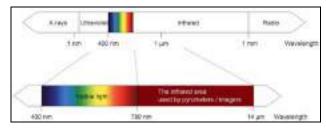


Figure 41: The electromagnetic spectrum and the area used for temperature measurement

For the measurement of "thermal radiation" infrared thermometry uses a wave-length ranging between 1 μ and 20 μ m. The intensity of the emitted radiation depends on the material. This material contingent constant is described with the help of the emissivity which is a known value for most materials (\triangleright 7 Emissivity).

Infrared thermometers are optoelectronic sensors. They calculate the surface temperature on the basis of the emitted infrared radiation from an object. The most important feature of infrared thermometers is that they enable the user to measure objects contactless. Consequently, these products help to measure the temperature of inaccessible or moving objects without difficulties.

70 • optris

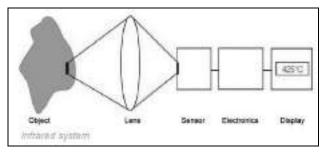


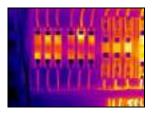
Figure 42: Main principle of non-contact thermometry

Infrared thermometers basically consist of the following components:

- Lens
- Spectral filter
- Detector
- Electronics (amplifier/ linearization/ signal processing)

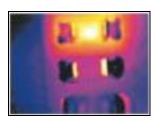
The specifications of the lens decisively determine the optical path of the infrared thermometer, which is characterized by the ratio Distance to Spot size. The spectral filter selects the wavelength range, which is relevant for the temperature measurement. The detector in cooperation with the processing electronics transforms the emitted infrared radiation into electrical signals.

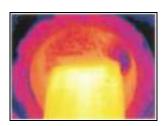
The advantages of non-contact thermometry are clear - it supports:

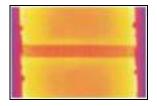

- temperature measurements of moving or overheated objects and of objects in hazardous surroundings
- very fast response and exposure times
- · measurement without inter-reaction, no influence on the
- measuring object
- non-destructive measurement
- long lasting measurement, no mechanical wear

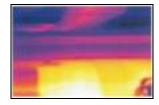
72 **o**ptris

Figure 43: Non-contact thermometry

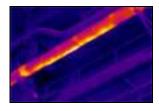

Application field:


Monitoring of electronic cabinets


R&D of electronics

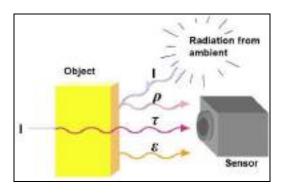

R&D of electronic parts

Process control extruding plastic parts


Process control manufacturing solar modules

Process control at calendering

R&D of mechanical parts


Monitoring of cables

74 Deptris

7 Emissivity

7.1 Definition

The intensity of infrared radiation, which is emitted by each body, depends on the temperature as well as on the radiation features of the surface material of the measuring object. The emissivity (ϵ – Epsilon) is used as a material constant factor to describe the ability of the body to emit infrared energy. It can range between 0 and 100 %. A "blackbody" is the ideal radiation source with an emissivity of 1.0 whereas a mirror shows an emissivity of 0.1.

- I IR radiation
- ε Emission
- ρ Reflection
- Transmission

$$\varepsilon + \rho + \tau = 1$$

Figure 44: Composition of IR radiation

Emissivity 75

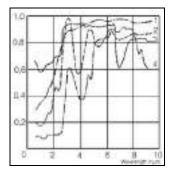


Figure 45: Spectral emissivity of several materials: 1 Enamel, 2 Plaster, 3 Concrete, 4 Chamotte

If the emissivity chosen is too high, the infrared thermometer may display a temperature value which is much lower than the real temperature – assuming the measuring object is warmer than its surroundings. A low emissivity (reflective surfaces) carries the risk of inaccurate measuring results by interfering infrared radiation emitted by background objects (flames, heating systems, chamottes). To minimize measuring errors in such cases, the handling should be performed very carefully and the unit should be protected against reflecting radiation sources.

76 **\$**optris

7.2 Determination of unknown emissivity

► First determine the actual temperature of the measuring object with a thermocouple or contact sensor. Second, measure the temperature with the infrared thermometer and modify the emissivity until the displayed result corresponds to the actual temperature.

▶ If you monitor temperatures of up to 380 °C you may place a special plastic sticker (emissivity dots – Part No.: ACLSED) onto the measuring object, which covers it completely.

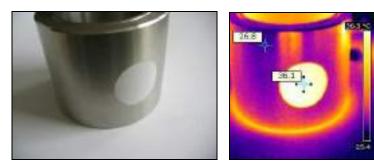


Figure 46: Plastic sticker at metal surface

Set the emissivity to 0.95 and take the temperature of the sticker. Afterwards, determine the temperature of the adjacent area on the measuring object and adjust the emissivity according to the value of the temperature of the sticker.

Emissivity 77

► Cove a part of the surface of the measuring object with a black, flat paint with an emissivity of 0.98. Adjust the emissivity of your infrared thermometer to 0.98 and take the temperature of the colored surface. Afterwards, determine the temperature of a directly adjacent area and modify the emissivity until the measured value corresponds to the temperature of the colored surface.

Figure 47: Shiny metal surface left and blackened metal surface right

CAUTION: On all three methods the object temperature must be different from ambient temperature.

78 **\$**optris

7.3 Characteristic emissivity

In case none of the methods mentioned above help to determine the emissivity you may use the emissivity table ► Appendix A and Appendix B. These are average values, only. The actual emissivity of a material depends on the following factors:

- temperature
- measuring angle
- · geometry of the surface
- thickness of the material
- constitution of the surface (polished, oxidized, rough, sandblast)
- spectral range of the measurement
- transmissivity (e.g. with thin films)

Figure 48: Adjustment of the emissivity in the software PI Connect (menu Tools/ Configuration/ Device)

Appendix A – Table of emissivity for metals

Material Spectral response		typical Emissivity				
		1.0 µm	1.6 µm	5.1 µm	8-14 µm	
Aluminium	non oxidized	0.1-0.2	0.02-0.2	0.02-0.2	0.02-0.1	
	polished	0.1-0.2	0.02-0.1	0.02-0.1	0.02-0.1	
	roughened	0.2-0.8	0.2-0.6	0.1-0.4	0.1-0.3	
	oxidized	0.4	0.4	0.2-0.4	0.2-0.4	
Brass	polished	0.35	0.01-0.05	0.01-0.05	0.01-0.05	
	roughened	0.65	0.4	0.3	0.3	
	oxidized	0.6	0.6	0.5	0.5	
Copper	polished	0.05	0.03	0.03	0.03	
	roughened	0.05-0.2	0.05-0.2	0.05-0.15	0.05-0.1	
	oxidized	0.2-0.8	0.2-0.9	0.5-0.8	0.4-0.8	
Chrome		0.4	0.4	0.03-0.3	0.02-0.2	
Gold	,	0.3	0.01-0.1	0.01-0.1	0.01-0.1	
Haynes	alloy	0.5-0.9	0.6-0.9	0.3-0.8	0.3-0.8	
Inconel	electro polished	0.2-0.5	0.25	0.15	0.15	
	sandblast	0.3-0.4	0.3-0.6	0.3-0.6	0.3-0.6	
	oxidized	0.4-0.9	0.6-0.9	0.6-0.9	0.7-0.95	
Iron	non oxidized	0.35	0.1-0.3	0.05-0.25	0.05-0.2	
	rusted		0.6-0.9	0.5-0.8	0.5-0.7	
	oxidized	0.7-0.9	0.5-0.9	0.6-0.9	0.5-0.9	
	forged, blunt	0.9	0.9	0.9	0.9	
	molten	0.35	0.4-0.6	COMM	Mosec V.	
Iron, casted	non oxidized	0.35	0.3	0.25	0.2	
	oxidized	0.9	0.7-0.9	0.65-0.95	0.6-0.95	

Material Spectral response		typical Emissivity				
		1.0 µm	1.6 µm	5.1 µm	8-14 µm	
Lead	polished roughened oxidized	0.35 0.65	0.05-0.2 0.6 0.3-0.7	0.05-0.2 0.4 0.2-0.7	0.05-0.1 0.4 0.2-0.6	
Magnesium		0.3-0.8	0.05-0.3	0.03-0.15	0.02-0.1	
Mercury			0.05-0.15	0.05-0.15	0.05-0.15	
Molybdenum	non oxidized oxidized	0.25-0.35 0.5-0.9	0.1-0.3 0.4-0.9	0.1-0.15 0.3-0.7	0.1 0.2-0.6	
Monel (Ni-Cu)		0.3	0.2-0.6	0.1-0.5	0.1-0.14	
Nickel	electrolytic oxidized	0.2-0.4 0.8-0.9	0.1-0.3 0.4-0.7	0.1-0.15 0.3-0.6	0.05-0.15 0.2-0.5	
Platinum	black		0.95	0.9	0.9	
Silver		0.04	0.02	0.02	0.02	
Steel	polished plate rustless heavy plate cold-rolled oxidized	0.35 0.35 0.8-0.9 0.8-0.9	0.25 0.2-0.9 0.8-0.9 0.8-0.9	0.1 0.15-0.8 0.5-0.7 0.8-0.9 0.7-0.9	0.1 0.1-0.8 0.4-0.6 0.7-0.9 0.7-0.9	
Tin	non oxidized	0.25	0.1-0.3	0.05	0.05	
Titanium	polished oxidized	0.5-0.75	0.3-0.5 0.6-0.8	0.1-0.3 0.5-0.7	0.05-0.2 0.5-0.6	
Wolfram	polished	0.35-0.4	0.1-0.3	0.05-0.25	0.03-0.1	
Zinc	polished oxidized	0.5 0.6	0.05 0.15	0.03 0.1	0.02 0.1	

Appendix B – Table of emissivity for non-metals

Material Spectral response		typical Emissivity				
		1.0 µm	2.2 µm	5.1 µm	8-14 µm	
Asbestos		0.9	0.8	0.9	0.95	
Asphalt		8.		0.95	0.95	
Basalt	111			0.7	0.7	
Carbon	non oxidized graphite		0.8-0.9 0.8-0.9	0.8-0.9 0.7-0.9	0.8-0.9 0.7-0.8	
Carborundum	Chronica Control		0.95	0.9	0.9	
Ceramic		0.4	0.8-0.95	0.8-0.95	0.95	
Concrete		0.65	0.9	0.9	0.95	
Glass	plate melt		0.2 0.4-0.9	0.98 0.9	0.85	
Grit				0.95	0.95	
Gypsum				0.4-0.97	0.8-0.95	
lce					0.98	
Limestone				0.4-0.98	0.98	
Paint	non alkaline		,		0.9-0.95	
Paper	any color			0.95	0.95	
Plastic >50 µm	non transparent			0.95	0.95	
Rubber	E-3			0.9	0.95	
Sand				0.9	0.9	
Snow				9	0.9	
Soil				·	0.9-0.98	
Textiles				0.95	0.95	
Water	1 A 1 W-			-	0.93	
Wood	natural			0.9-0.95	0.9-0.95	

82 **\$\phi**ptris\$

Appendix C – Quick start for serial communication

Introduction

One special feature of the PI Connect software contains the possibility to communicate via a serial COM-Port interface. This can be a physical COM-Port or a virtual COM-Port (VCP). It must be available on the computer where the PI connect software is installed.

Setup of the interface

- 1. Open the Options dialog and enter the tab "Extended Communication" to enable the software for the serial communication.
- 2. Select the mode "COM-Port" and choose the appropriate port.
- 3. Select the baud rate that matches the baud rate of the other communication device. The other interface parameters are 8 data bits, no parity and one stop bit (8N1).

These parameters are used in many other communication devices too. The other station must support 8 bit data.

4. Connect the computer with the communication device. If this is a computer too, use a null modem cable.

Command list

The command list is provided on the software CD and in the PI Connect software ($\texttt{Help} \rightarrow \texttt{SDK}$). Every command must expire with CR/LF (0x0D, 0x0A).

84 + optris

Appendix D – Interprocess Communication (IPC)

The description of the initialization procedure as well as the necessary command list is provided on the CD and in the PI Connect software ($\mathtt{Help} \to \mathtt{SDK}$).

2 SDK packages are available (can be found on the included software CD):

- 1. Connect SDK: requires the PI Connect software
- 2. **Direct SDK:** no PI Connect software required, supports Linux and Windows

The communication to the process imager device is handled by the PI Connect software (Imager.exe) only. A dynamic link library (ImagerIPC2.dll) provides the interprocess communication (IPC) for other attached processes. The DLL can be dynamically linked into the secondary application. Or it can be done static by a lib file too. Both Imager.exe and ImagerIPC2.dll are designed for Windows Vista/ 7/ 8/ 10 only. The application must support call-back functions and polling mode.

The ImagerIPC2.dll will export a bunch of functions that are responsible for initiating the communication, retrieving data and setting some control parameters.

The main difference to the former Version 1 (ImagerIPC.dll) is the support of more than one Optris PI via multiple instances of Optris PI Connect.

Appendix E – PI Connect Resource Translator

A detailed tutorial is provided on the CD.

PI Connect is a .Net Application. Therefore it is ready for localization. Localization as a Microsoft idiom means a complete adaption of resources to a given culture. Learn more about the internationalization topics consult Microsoft's developer documentation on

http://msdn.microsoft.com/en-us/goglobal/bb688096.aspx.

If desired the localization process can be illustrated in detail. Also the resizing of buttons or other visible resources and the support of right-to-left-languages are supported. Experts who have the appropriate tools should handle it. Nevertheless we have developed the small tool "Resource Translator" to make the translation of the resources of the PI Connect application possible for everybody.

This tool helps to translate any visible text within the PI Connect application.

86 \$\phi\text{optris}\$

Appendix F – Wiring diagrams PIF

Analog Output:

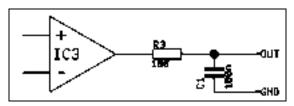


Figure 49: Analog output

For voltage measurements the minimum load impedance must be 10 KOhm.

The analog output can be used as a digital output too. The voltage for "no alarm" and "alarm on" is set within the software. The analog output (0 ... 10 V) has a 100 Ohm resistor in series. With a maximum current of 10 mA the voltage drop is 1 V.

To use an alarm LED with a forward voltage of 2 V the analog output value for "alarm on" must be 3 V as maximum.

Digital Input:

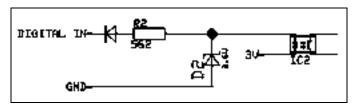


Figure 50: Digital input

The digital input can be activated with a button to the PI GND-Pin or with a low level CMOS/TTL signal: Low level 0...0.6 V; High level 2...24 V

Example Button:

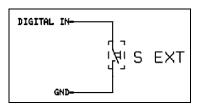


Figure 51: Button

88 **\$**optris

Analog input (usable voltage range: 0 ... 10 V):

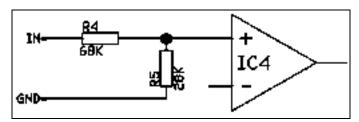


Figure 52: Analog input

Relay output at industrial PIF [Part No.: ACPIPIF500V2CBxx]

The analog output must be set to "Alarm". The voltage level for AO1-AO3 can be set in the software (no alarm: 0 V/ alarm: 2-10 V)

REL1-3 (DO1-DO3): $U_{max} = 30 \text{ VDC}$

 $I_{max} = 400 \text{ mA}$

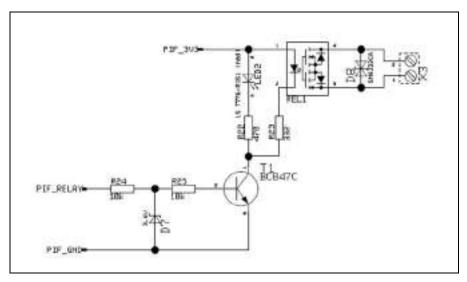


Figure 53: Relay output at industrial PIF

Appendix G – Declaration of Conformity

Wir/We

EU Declaration of Conformity

EG-Konformitätserklärung

Optris GmbH Ferdinand Buisson Str. 14 D-13127 Berlin

erklären in alleiniger Verantwortung, dass declare on our own responsibility that

die Produktserie optris PI the product group optris PI

den Anforderungen der EMV-Richtlinie 2014/30/EU und der Niederspannungsrichtlinie 2014/35/EU

meets the provisions of the EMC Directive 2014/30/EU and the Low Voltage Directive 2014/35/EU.

Angewandte harmonisierte Normen: Applied harmonized standards:

EMV Anforderungen / EMC General Requirements:

EN 61326-1:2013 (Grundlegende Prüfanforderungen / Basic requirements) EN 61326-2-3:2013

Gerätesicherheit von Messgeräten / Safety of measurement devices:

EN 60825-1:2016 (Lasersicherheit / Laser safety)

Dieses Produkt enfull die Vorschriften der Richtlinie 2011/69EU (RoHS) des Europäischen Parlaments und des Rates vom 8. Juni 2011 zur Beschrankung der Verwendung bestimmter Parlaments und des Rates vom 8. Juni 2011 zur Beschrankung der Verwendung bestimmter Talsgahlicher Rohe in Elektro- und Elektronkgeräten. This product is in conformity with Directive 2011/65/EU (RoHS) of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Berlin, 04.11,2015

Ort, Datum / place, date

Dr. Ulrich Kienitz Geschäftsführer / General Manager